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Section 1: Introduction 

 Over the past few decades, there has been increasing concern that many published research 

findings are difficult or impossible to replicate. This phenomenon known as the Data-Replicability 

Crisis--- has been observed across a variety of fields in the social sciences and medicine, among other 

fields. While a lack of replicability doesn’t entirely demonstrate all critical findings are false--- it does 

undermine reliability and credibility—key cornerstones of the scientific method. This poses a 

particularly pernicious effect in the medical field, because physicians, patients, and health care 

providers rely on accurate and up-to-date information to best serve their patients. Indeed, it seems a 

lack of reliability hurts patients in two critical ways:  

1) A large percentage of findings in medical research may contain no underlying truth (This 

hurts patients in the short-term as they may be given faulty advice, such as to take drugs that 

provide no real benefit.) 

2)  Stunting further medical innovation: False positives may hurt the medical field by creating a 

“cloud-of-uncertainty.” This may undermine innovation as even one-faulty-study, can lead to a 

rabbit-hole, where further R+D money is wasted. There is some evidence to support the 

claim that false-positives serve as a growth drag on innovation as (Macleod et al. 2014) shows 

waste across biomedical research accounts for $85 billion annually.1 This effect is particularly  

pronounced if false-positives garner widespread media coverage such as Andrew Wakefield’s 

retracted study on measles and autism.2  

While false medical research is always discouraging, the stakes in the field of oncological 

therapeutics are particularly high. This is because innovation at the clinical level has the potential to 

lead to the development of new cancer therapeutics which can both improve survival rates and 

quality of life for millions of cancer patients around the world.3 Furthermore, the development of 

oncological therapeutics is one of the most expensive processes in drug development, so there is a 

real financial incentive to make sure money is well spent. It is precisely because these stakes are so 

high that researchers have gone to great lengths to estimate the false-positive rate (sometimes 

referred to as the “failure-rate”) in oncology and to propose strategies to make it lower. Some 

                                                
1 Malcolm Macleod, “Biomedical Research: increasing value, reducing waste,” The Lancet, 2014. A paper which showed 
that showed the cumulative effective was that about 85% of research investment—equating to $200 billion of the 
investment in 2010—is wasted.  
2 Andrew Wakefield’s retracted study on measles and autism 
3 Begley, C., Ellis, L. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012). 
https://doi.org/10.1038/483531a 
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researchers have argued that because of the intrinsic difficulty of studying cancer, we should not be 

discouraged by a low-success rate. However, it would nevertheless be disappointing in a) suggesting 

a poor ability to transfer cancer research into clinical success and outcomes for patients, b) serving 

as growth drag on true developments in cancer therapeutics, as false-positives drain precious money 

and time from other initiatives, and c) creating a rabbit-hole of further research tangentially related 

to the originally false research.  

While the larger issue of data irreproducibility has been buzzing around the oncological 

community for decades, it reached a fever pitch when the biotechnology firm Amgen, reviewed 

fifty-three “landmark” cancer papers in 2012. These fifty-three papers were selected by researchers 

Ellis and Begley, because they were supposed to represent some of the most promising and 

innovative develops in the field of oncology therapeutics --- such as fresh approaches to target 

cancer or alternative clinical uses for existing therapeutics.4 Nevertheless, scientific findings were 

only confirmed in 6 studies, representing a discouraging 11% reproducibility rate.5 This high failure 

rate served as an almost existential threat to the field of clinical oncology, highlighting both an 

existing and historic inability to translate cancer research into successful clinical trials and ultimately 

more effective drugs. While this 11% number certainly paints a grim picture, it is not totally out of 

the ballpark of other empirical studies including a Bayer Health team in Germany which found that 

only 25% of published preclinical studies could be validated “to the point where projects could 

continue.”6 Taken together, these two studies suggest that oncological research is characterized by 

extremely-poor reproducibility which serves as a meaningful roadblock early-on in the pipeline of cancer 

drug development. Perhaps this is why cancer has such high drug attrition rates. As shown by 

(Hutchinson and Kirk, et al. 2011) only 5% of agents that have anticancer activity in preclinical 

development are licensed after demonstrating sufficient efficacy in phase three testing.7  

While this issue of erroneous papers is particularly troubling in oncological research, it 

effects all of medicine more broadly. It also seems that irreproducibility and false-positives are a natural 

byproduct of hypothesis testing. Hypothesis testing, otherwise known as significance testing, is one 

of the most common statistical tests utilized in a variety of fields including biology, medicine, 

                                                
4 Begley, C., Ellis, L. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012). 
https://doi.org/10.1038/483531a 
5 Ibid. 
6 Hutchinson, L., Kirk, R. High drug attrition rates—where are we going wrong?. Nat Rev Clin Oncol 8, 189–190 (2011). 
https://doi.org/10.1038/nrclinonc.2011.34 
7 Ibid. 
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phycology, and the physical sciences.8  In seeking to prove a causal scientific hypothesis, such as that 

a drug will lower blood pressure, researchers start with a null hypothesis—that nothing is going 

on—and the scientific hypothesis doesn’t hold (b1=0). This is essentially a default position of 

skepticism, much like assuming a defendant is innocent until proven guilty.9 Under this paradigm, 

scientist compare their results to what they would expect if the null hypothesis were true. They then 

calculate the probability of observing a specific result, given the null hypothesis is true. This value is 

known as the P-Value. Prior to an experiment, researchers select a “significance” level so that if the 

P-value is below the threshold (typically 0.05), it is considered “statistically significant,” and the null 

hypothesis is rejected. In the case of a clinical trial of medication claiming to lower blood pressure, 

the rejection of the null hypothesis (b1=0) means researchers conclude (something) does affect 

blood pressure—a big step into eventually bringing the drug to market. 

Although hypothesis-testing serves an important role in the scientific process, the approach is 

not without faults. Indeed, by utilizing a P-value of 0.05, researchers accept a 5% error rate. This 

means that if researchers test twenty garbage theories, we would expect one to end up being 

statistically-significant creating a false-positive result that gets published. Therefore, hypothesis 

testing will always generate some-level of false positives, even without P-hacking, data-mining, or 

overt manipulation. Considering this unavoidable fact, what becomes critically important is the ratio 

of false studies to true studies researchers analyze. This is because, throughout the peer-review and 

selection process, medical journals tend to publish only results from researchers who achieve 

statistical significance causing a survivorship bias. As shown in figure 1, this distortion can lead to an 

alarmingly high percentage of false paper if a large percentage of theories, researchers analyze are 

garbage (containing no objective truth). Indeed, if researchers analyze twenty false theories, for every 

single hypothesis that is true (not an unreasonable ratio considering the difficulty in scientific 

research) they reach the break-even point, where half of the published medical research is false!  

 

 

 

 

                                                
8 Hutchinson, L., Kirk, R. High drug attrition rates—where are we going wrong?. Nat Rev Clin Oncol 8, 189–190 (2011). 
https://doi.org/10.1038/nrclinonc.2011.34 
9 Tim Dean, “How do we Edit Science part 2, Significance Testing, P-hacking and Peer Review,” The Conversation.  
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Figure 1: Ratio of true/false theories tested vs Accuracy of published research 
 
Ratio of true to false theories 
tested by researchers 

 
P-Value 

Percentage of Published 
Research which is True10 

1:1  P= 0.05 95.24% 
1:2 P= 0.05 90.91% 
1:5 P= 0.05 80% 
1:10 P= 0.05 66.66% 
1:20 P= 0.05 50% 
1:50  P= 0.05 28.57% 
1:100 P= 0.05 16.66% 
1:1000 P= 0.05 1.97% 

*Note the full mathematical equation which estimates the predictive power of positive research 
findings (PPV) is as follows: 
 PPV = (1- ß) *R/ (R- ßR + a)  

where ß is the Type II error rate, a is the Type I error rate, and R is the ratio of “true 
relationship” to “no relationship” among the specific sub-field. 

 
As figure 1 shows, even the most well-meaning, ethical researchers will publish some level of 

false-positives research. This is because finding new medical research is difficult, and there is a 

publication selection bias (sometimes known as the “file drawer effect”) where studies with 

nonsignificant results have much lower publication rates.11 This phenomenon has been known for 

years, but the critical insight, as shown by figure 1, is that as the ratio of true-to-false theories tested 

decreases, the accuracy rate of published research falls. This phenomenon is also displayed in figure 

two, as published medical research tends to bunch around the 5% significance-level. This suggests 

not only that published research is not representative, but also that there may be subtle and 

unconscious manipulation by researchers to achieve the all-important 5% statistical significance.  

 

 

 

 

 

 

 

                                                
10 This figure is not totally correct as it doesn’t include an assumption about P[reject if null hypothesis is false]. For more 
full analysis see the equation for PPV: positive predictive value as derived by John. P.A. Ioannidis:  

Ioannidis JPA (2005) Why most published research findings are false. PLoS Med 2: e124. pmid:16060722 
11 Rosenthal R (1979) The file drawer problem and tolerance for null results. Psychol Bull 86: 638–641. 
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Figure 2: Understanding the File-Drawer Effect 

 
The emergence of big data and modern computing has drastically lowered the cost of testing 

new theories. This has given researchers much more flexibility in data-design, including the ability to 

mine the data without a prior hypothesis, only to claim that a statistically significant result has been 

originally predicted.12 This practice, known as “HARKing” (Hypothesizing After the Result are 

Known), is particularly dangerous is fields such as nutritional science, where research produces huge 

data-sets with many variables. Utilizing statistical software, it becomes easy to mine the “cornucopia 

of possible variations” to find spurious correlations, creating a slew of false results.13 Indeed, 

proponents of sophisticated analytics software even advertise the ability to “mine large data sets for 

insights as to the solution to many of our society’s problems.”14 This logically contributes to the 

replication crisis because as the ratio of true to false theories tested increases (Figure 1, Column 1) 

the accuracy rate of published papers (Figure 1, Column 3) decreases.   

In addition to data mining and “HARKing,” researchers have a variety of tools to increase 

the likelihood of finding statistical significance. One of the most common is known as P-hacking or 

                                                
12 Kerr, N. L. (1998). HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review, 2(3), 
196-217. doi:10.1207/s15327957pspr0203_4  
13 Christie Aschwanden, “You can’t trust what you read about nutrition,” Fivethirtyeight, 2016. 
14 Richards, Neil M. and King, Jonathan, Three Paradoxes of Big Data (September 3, 2013). 66 Stanford Law Review 
Online 41 (2013). Available at SSRN: https://ssrn.com/abstract=2325537 
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“selective reporting” where researchers misreport true effects size in published studies. As argued by 

Tim Dean, HARKing is best conceived as a subsection of P-hacking—a more all-encompassing 

term. Unlike HARKing, which specifically refers to hypothesizing after results, P-hacking reflects 

that bias that can occur throughout the publication process.15 Common practices of p-hacking 

include: conducting analysis midway through an experiment to decide whether to collect more data 

or recruit additional participants,16 (Head et al. 2015) recording many response variables and deciding 

which to post-analysis, 17 (Gadbury et al. 2014), the selective deletion of outliers (to artificially inflate 

statistical significance of tested variables), excluding, or splitting treatment groups in post-analysis,18 

(Ioanndis et al. 2005), and stopping data exploration if analysis yields a significant P-value19 (Bastardi 

et al. 2015). In addition, researchers can always engage in outright fabrication of data and fraud. 

Perhaps in its less pernicious form, this could involve poor research practices, such as failure to 

control for bias, low statistical power, and poor-quality control. 

From a theoretical standpoint, it is easy to see how P-hacking, data-mining, and overt 

manipulation by researchers accelerates the rate of false-positives in oncological therapeutics and 

other areas of medical research. But a key insight from figure 1, is that there will always some level 

of inaccuracies in peer-reviewed research papers. In a sense, this is the million-dollar question of the 

replication crisis: How can we begin to untangle the effect of P-hacking from the naturally occurring 

rate of false-positives that occurs as a result of testing? This is a problem that is extraordinarily 

difficult to measure as it involves quantifying a few problems.  

1. How big is the current replication crisis? (What is the rate of false-positives?) 
2. What percentage of false-positives are due to P-hacking and data-manipulation?  
3. What is the underlying ratio of false-positives without P-hacking and data-manipulation? 

This question might involve deciphering what the rate of false-positives was before the 
technological revolution, and whether there are better alternatives that claiming 
conclusive findings solely on the basis of a single study assessed by a statistical 
significance of a P-value of 0.05. 

As figure 1 shows, it is possible to build a theoretical framework to estimate the likelihood a 

published research paper is true. However, from a mathematical modeling perspective, it becomes 

                                                
15	Tim Dean, “How do we Edit Science part 2, Significance Testing, P-hacking and Peer Review,” The Conversation.	
16  Head M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D. (2015). The extent and consequences of p-
hacking in science. PLoS Biol, 13(3): e1002106. doi:10.1371/journal.pbio.1002106 
17 Gadbury GL, Allison DB (2014) Inappropriate fiddling with statistical analyses to obtain a desirable p-value: Tests to 
detect its presence in published literature. PLoS ONE 7: e46363. 
18 Ioannidis JPA (2005) Why most published research findings are false. PLoS Med 2: e124. pmid:16060722 
19 Bastardi A, Uhlmann EL, Ross L (2011) Wishful thinking: Belief, desire, and the motivated evaluation of scientific 
evidence. Psychol Sci 22: 731–732. pmid:21515736 
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difficult in that no one really knows (Column 1) the ratio of true to false theories tested. Another 

way of phrasing this is that it’s difficult to put a precise number on the probability that an individual 

research topic is true prior-to issuing a statistical test. Indeed, at the individual-level this task is 

arduous enough to make even the most fervent Bayesian blink: As not only do we have the issue of 

evaluating the prior-probabilities that research is true, but these predictions must be robust enough to 

adapt to individual circumstances. Logistically this seems impossible, as the odds of research being 

true prior-to a statistical test could be interrelated with a variety of other factors, including the field of 

study, the flexibility in design, the tenacity of the researcher, a researcher statistically tools & 

propensity to P-hack and even whether they are up for tenure. It is here where (Ioannidis et al. 2006) 

had a critical insight.20 In order, to calculate the (positive predictive value), otherwise known as the 

accuracy rate of publicized findings, instead of seeking to find, the prior-probability of research is true, 

he just assumed that prior probability would be equal to the average of that specific subfield.  

Ioannidis’s unique solution allowed for the creation of a basic mathematical model to 

estimate the odds a recent paper is true (PPV). In particular, he showed that the odds of a being true 

are interrelated with R: the ratio of the number of “true relationships” to “no relationship” among 

researchers tested in a field, the statistical power of the study, and level of statistical significance.21 

Ø Basic Model: PPV = (1- ß) *R/ (R- ßR + a) where ß is the Type II error rate, a  
is the Type I error rate, and R is the ratio of “true relationship” 
to “no relationship” among the specific sub-field. 

Note, this general form will be discussed in greater detail throughout the paper, but a critical 

insight is often quite difficult to reach a PPV = 0.5. In an intuitive sense, this means it is difficult for 

most research to be true, and mathematically assuming a= 0.05, a paper is only most likely true if 

and only if: (1- ß)/R > 0.05: 

 

 

 

 

 

 
 
 
 
                                                
20 Ioannidis JPA (2005) Why most published research findings are false. PLoS Med 2: e124. pmid:16060722 
21 Ioannidis JPA (2005) Why most published research findings are false. PLoS Med 2: e124. pmid:16060722 
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Section 2: Literature Review: How big is the Data Replicability Crisis in Medicine? 
In seeking to discuss the impact of P-hacking and data manipulation in the medical field 

there is perhaps no more important question then the following: What percentage of published 

medical findings are replicable? This question is critically important, because it is suggestive of the 

larger dynamics surrounding the reliability of medical research. Indeed, reproducibility is often 

considered to be “the defining features of science” because, without it, theories lack the empirical 

evidence to become accepted as scientific truth.22 Put bluntly, the size of the reproducibility crisis is 

important because it suggests what percentage of medical research may be false. 

Over the past decade, researchers have developed a variety of methodological approaches to 

estimate the size of the data-replicability crisis. With that being said, the task of estimating the 

overall false-positive rate in medicine is still extraordinarily difficult because a) The volume of 

medical literature is extremely large: (Based on analysis by the National Library of Medicine, there 

may be around 2.5 million papers in 30,000 medical journals published each year.23 b) Medical 

research is very expensive to produce. (This is particularly true for RCTs and clinical trials --- as an 

example, the cost of developing an oncology therapeutic is approximately $78.6 million,)24 and c) 

False-positive rates tend to vary widely by subfield. 

 When combined in aggregate, these factors make it virtually impossible to accurately test the 

overall reproducibility of findings in the medical field, as doing so would involve constructing a 

representative “subsample” of all medical findings, evaluating the percentage of the subsampled 

findings which are reproducible, and then extrapolating overall reproducibility from that subsample. 

This process is not realistic with financial and time constraints, and difficult to replicate even in 

fields like phycology---which by best indications may have only a 40% reproducibility rate.25 With 

that being said researchers have been able to more effectively estimate replicability in specific 

medical subfields, as well as establishing a lower bound by assessing rates of fraud and data 

manipulation.  

One medical subfield that has garnered a lot of academic and social interest has been the 

field of oncology. This is because innovation at the clinical level has the potential to lead to the 

                                                
22 Tim Dean, “How do we Edit Science part 2, Significance Testing, P-hacking and Peer Review,” The Conversation. 
23 It should also be noted, that only a tiny minority of research is published in “Major General Medical Journals.” For 
example, out of the 730,447 articles labeled as “clinical trial” in PubMed as of May 26, 2016, only 18,231 were published 
in the major medical journals. 
24 “3.1 Costs by Therapeutic Area.” ASPE, February 2017, aspe.hhs.gov/report/examination-clinical-trial-costs-and-
barriers-drug-development/31-costs-therapeutic-area, for more information see figure 1.  
25 Gilbert, Daniel T., et al. “Estimating the Reproducibility of Psychological Science.” Open Science Collaboration, American 
Association for the Advancement of Science, 2015.	
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development of new cancer therapeutics which can both improve survival rates and quality of life 

for millions of cancer patients around the world.26 It is precisely because these stakes are so high that 

researchers have gone to great lengths to estimate the false-positive rate (sometimes referred to as 

the “failure-rate”) in oncology and propose strategies to make it lower. While some researchers have 

argued because of the intrinsic difficulty of studying cancer, we should not be discouraged by a low-

success rate, it would nevertheless be disappointing in a) Suggesting a poor ability to transfer cancer 

research into clinical success and outcomes for patients, b) Serving as growth drag on true 

developments in cancer therapeutics: as false-positives drain precious money and time from other 

initiatives, and c) Creating a rabbit-hole of further research tangentially related to the originally false 

research.  

While the larger issue of data irreproducibility has been buzzing around the medical 

community for decades, it reached a fever pitch when the biotechnology firm Amgen reviewed fifty-

three “landmark” cancer papers in 2012. These fifty-three papers were selected by researchers Ellis 

and Begley because they were supposed to represent some of the most promising and innovative 

develops in the field of oncology therapeutics --- such as fresh approaches to target cancer or 

alternative clinical uses for existing therapeutics.27 Nevertheless, scientific findings were only 

confirmed in 6 studies, representing a discouraging 11% reproducibility rate.28 This high failure rate 

served as an almost existential threat to the field of clinical oncology: highlighting both an existing 

and historic inability to translate cancer research into successful clinical trials and ultimately more 

effective drugs. While this 11% number certainly paints a grim picture, it is not totally out of the 

ballpark of other empirical studies including a Bayer Health team in Germany which found that only 

25% of published preclinical studies could be validated “to the point where projects could 

continue.”29 Taken together, these two studies suggest that oncological research is characterized by 

extremely-poor reproducibility which serves as a meaningful roadblock early-on in the pipeline of cancer 

drug development. Indeed, as aptly stated by Ellis and Begley, erroneous research papers “spawned 

an almost entire field, with hundreds of secondary observations, without actually seeking to confirm 

                                                
26 Begley, C., Ellis, L. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012). 
https://doi.org/10.1038/483531a 
27 Ibid. 
28 Ibid. 
29 Hutchinson, L., Kirk, R. High drug attrition rates—where are we going wrong?. Nat Rev Clin Oncol 8, 189–190 (2011). 
https://doi.org/10.1038/nrclinonc.2011.34	



 11 

or falsify its fundamental basis.”30 Perhaps this is why cancer has such high drug attrition rates - as 

shown by (Hutchinson and Kirk, et al. 2011) only 5% of agents that have anticancer activity in 

preclinical development are licensed after demonstrating sufficient efficacy in phase three testing.31 

While to a certain extent it is not surprising that cutting edge, oncological research has a high false-

positive rate (likely over 75%), researchers have proposed a variety of solutions to raise the 

standards of preclinical research including improving understanding of pharmacokinetics and 

pharmacodynamics, appreciating the limits of tumor cell lines and animal models, and allowing 

researches to publish stories that fill in “gaps” rather than publishing perfect stories.32 While such 

strategies are unlikely to equalize oncological rates of replicability with other therapeutic areas, as 

sadly clinical oncology has the highest failure rate, it would serve as a helpful first step.  

Recognizing that there is a wide variation in false-positive rates and replicability between 

medical subfields, researchers have approximated a lower-bound for the false-positive rate of all 

medical research by analyzing rates of fraud and data manipulation amongst researchers. Perhaps 

most famously, an FDA data-auditing of medical research from 1977-1990 found that approximately 

10-20% of R&D funds are estimated to be spent on questionable studies characterized by a 

“misrepresentation of data, inaccurate reporting, and fabrication of experiment results.”33 Within this 

broad categorization of data-misrepresentation, (Glick et al.) found that 2% of clinical investigators 

were guilty of serious scientific misconduct.34 These results are similar to a National Institute of 

Health (NIH) survey of early-to-mid level career scientists (n=3247) which found that within the 

previous 3 years, “0.3% admitted to falsification of data, 6% to failure to present conflicting 

evidence, and 15.5% to changing the study design, methodology or results in response to funding 

pressure.”35 While these findings are troubling they suggest that classic ‘fraud’ falsification, 

fabrication, and plagiarism (FFP) may be less important than more subtle research practices, 

including P-hacking, data mining, selective reporting of dependent variables, and tinkering of data-

                                                
30 Begley, C., Ellis, L. “Raise standards for preclinical cancer research,” Nature 483, 531–533 (2012). 
https://doi.org/10.1038/483531 
31 Hutchinson, L., Kirk, R. High drug attrition rates—where are we going wrong?. Nat Rev Clin Oncol 8, 189–190 (2011). 
https://doi.org/10.1038/nrclinonc.2011.34 
32 Ibid, direct quote.  
33 J, Leslie Glick (1992) “Scientific data audit—A key management tool, Accountability in Research” 2:3, 153-
168, DOI: 10.1080/08989629208573811 
34 Ibid.  
35 Martinson BC, Anderson MS, de Vries R. 2005. Scientists behaving badly. Nature 435, 737–738. 
(doi:10.1038/435737a) 
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sets.36 These findings were echoed by meta-analysis research of survey data by (Fanelli, et al. 2009), 

which found that despite only a “1-3% rate of fraud per se, approximately 33.7% of scientist admit to 

engaging in questionable research practices,” with admission rates skyrocketing to 72% when 

discussing the behavior of colleagues.37 While these data-points paint a discouraging picture about 

the current state of ethics in medical research, they may also be suggestive of a toxic ‘publish or 

perish’ culture where scientists are incentivized to create publishable results at all costs, thereby 

increasing bias. 

 While this is still a developing field preliminary research from (Fanelli, et al. 2010) indicates 

that across all-disciplines, papers are more likely to support a tested hypothesis if “their 

corresponding authors work in a state that, according to NSF data, produces more academic paper 

per capita.”38 The size of this effect only increased after controlling for the state’s per capita R&D 

expenditure, and although Fanelli was unable to control for the confounding effect of institutional 

prestige, these results support the hypothesis that competitive academic environments increase 

scientific bias.39 This provides some evidence to the traditional “publish or perish,” hypothesis 

which suggests that if scientists are incentivized to create publishable results at all costs, publication 

bias will increase.  There is also some longitudinal data to support this claim, as research from (Fang 

et al. 2013) found that the percentage of scientific articles retracted because of fraud has increased 

10-fold since 1975, which has coincided with both an explosion in the number of medical research 

published and increased competition for scientific funding.40 While this correlation at the cohort-

level, between rates of competition for research funding, and retraction due to fraud does not 

necessarily imply a causal relationship, it is suggestive that further research needs to be done to 

determine what is causing increased data-manipulation in medical research.  

Finally, despite most research focusing on the replicability rates within a specific medical 

subfield, or efforts to establish a lower-bound for all medical research by focusing on data-

manipulation and scientific misconduct, some researchers have sought to quantify the overall false-

positive rate of medical research. This work has been most notably completed by (Ioannidis et al. 

                                                
36 Grimes David Robert, Brauch Chris T. and Ioannidis John P.A, “Modeling Science Trustworthiness under Publish or 
Perish,” R. Soc. Open Sci: 5: 171511 https://doi.org/10.1098/rsos.171511 
37 Fanelli D (2009) How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of 
Survey Data. PLoS ONE 4(5): e5738. https://doi.org/10.1371/journal.pone.0005738, direct quote.  
38 Ibid.  
39 Ibid.  
40 Fang FC, Steen RG, Casadevall A. Misconduct accounts for the majority of retracted scientific publications [published 
correction appears in Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1137]. Proc Natl Acad Sci U S A. 2012;109(42):17028-
17033. doi:10.1073/pnas.1212247109 
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2005), who analyzed the 49 medical studies from 1990-2003 with more than 1000 signatures.41 While 

it is important to acknowledge that Ioannidis paper “Contradicted and Initially Stronger Effects in 

Highly Cited Clinical Research,” is not a representative sample of all medical research --- it is a 

powerful indication of the likely error rate in clinical research studies published in major journals 

that become widely cited. In terms of methodology, Ioannidis compared the results of the initial 

highly cited articles against subsequent studies of larger sample size and better-controlled designs, to 

determine replicability and effect size. Out of these 49 studies, “16% were contradicted by 

subsequent studies, 7 others (16%) had found effects that were stronger than those of subsequent 

studies, 20 (44%) were replicated, and 11 (24%) remained largely unchallenged.”42 Five of 6 highly-

cited nonrandomized studies had been contradicted or had found stronger effects vs 9 of 39 

randomized controlled trials (P = .008).43 These results suggest that clinical research on the efficacy 

of medical interventions is sometimes followed by subsequent studies that either reach the opposite 

conclusion or suggest the magnitude of the original claims were too large. This point about the 

relative size of effects is quite important, because, particularly with clinical trials, they often show 

much larger effects in trials than in the real-world because participants are in a perfectly-modulated 

setting under the appropriate guidance of a health professional. However, it is important to note, 

that this is still an ongoing debate in medical field and that some evidence from (Benson et al. 2000) 

suggests that at least as it relates to observational studies after 1984, there is no major evidence that 

they find “consistently larger or qualitatively different effects, than those in randomized, controlled 

trials.”44  However, this is less likely to be the case for randomized control trials. Indeed, not to 

digress further, but the typically larger impact medicine has in controlled trials vs. the typical effect it 

has on patients in real life, may not be only suggestive of the importance of taking medicine as 

directed, but also of the Placebo effect. While further research is needed to validate these claims and 

explore whether specific types of studies are more likely to be contradicted than others, it is 

important to also consider limits to generalizability. This is specifically because highly cited-studies 

may have either a) a lower false-positive rate than medical research as a whole if it reflects top-

quality research or contrarily b) have a higher false-positive rate if widely cited research tends to 

                                                
41 Ibid.  
42 Ioannidis JP. Contradicted and initially stronger effects in highly cited clinical research. JAMA. 2005;294(2):218-228. 
doi:10.1001/jama.294.2.218 
43 Ibid.  
44 Benson, Kjell and Hartz, J. Arthur. “A comparison of Observational Studies and Randomized Controlled Trials N 
Engl J Med 2000; 342:1878-1886 
DOI: 10.1056/NEJM200006223422506 
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become famous for the ‘wrong’ reasons (such as wide exposure to the media because of a splashy or 

trendy result.)  

Summary Estimated False-Positive Rates of Medical Research:  

- Upper bound: Oncological therapeutic research: 75-88% 
- Lower bound: Overt data manipulation 1-3%, studies of poor methodological 

quality 10-20%, and number of scientists admitting to questionably research 
practices 36-72%  

-  Ioannidis’s Mid-level estimate: “High-impact studies:” 16% show opposite effect 
+ 16% show initial studies exaggerated effects = 32%  
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Section 3: Methodological Framework, (How I gathered Data) 
To investigate the gap between expectations and the reality of good clinical practice, I am 

going to engage in the meta-analytical P-curve approach. This was perhaps most famously utilized 

by a team of German scientists (Belas et al. 2017). In their groundbreaking paper, “P-hacking in 

Clinical Trials: A Meta-Analytical Approach,” they were able to compile a dataset consisting of 

thousands of clinical trials, that contained both primary and secondary endpoints. Primary endpoints 

are defined as covering the “main effect,” of the experiment, thus directly influencing the drug 

approval process --- whereas secondary outcomes detail further information unrelated to the 

approval process. From a P-hacking perspective there is therefore an incentive for researchers to 

“tinker” with the P-value of the primary endpoint but not the secondary endpoint. This is what the 

research from (Belas et al. 2017) showed and indeed they observed an “abnormal increase in the P-

value frequency at common significance thresholds, while the secondary P-value contained no such 

anomaly.”45  

The P-curve approach has been used as a strategy to distinguish between selective reporting 

of results on one hand and truth on the other (Simonsohn et al., 2014). The p-curve approach is just 

an observation of the frequency of distribution of p-values. The logic that underpins the p-curve is 

that if a group of studies has no effect, the p-curve should have a uniform distribution, whereas, if 

the studies have some effect, then the p-curve should be right-skewed. The more statistically 

impactful the studies measured, the larger the right-skew should become.46 Therefore, a  

“right-skewed p-curve, which encompasses a set of independent findings with continuously 

decreasing p-values from low to high, is an indicator of evidential value.”47 When p-curves differ 

substantially from this ideal shape --- this is suggestive that studies may be of poor methodological 

quality or that data-drugging or p-hacking may be occurring.  

 For my P-curve analysis, I have chosen to analyze published studies from the New England 

Journal of Medicine. I have made this choice because the NEJM is the most widely read, cited, and 

influential medical journal in the world.48 Indeed, NEJM has the highest Journal Impact Factor 

(74.699) of all general medical journals (Source Clarivate, 2020). NEJM also has broad public access 

(meaning I was able to find the studies) --- and contains high-quality peer-reviewed research and 

interactive clinical content. Given, my analysis on P-curves is of studies published in NEJM, this 

                                                
45 Direct quote, Belas et al. 2017. 
46 Ibid. 
47 Ibid, direct quote.  
48 Clarivate, 2020.	
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suggests that my findings may be generalizable to other high-impact journals, but not to medical 

journals or medical research more broadly. 

 In its selection process, each year NEJM receives over 16,000 submissions. Given only 5% 

of original research submissions achieve publication in the U.S. this suggests NEJM publishes 

approximately 800 studies each year. In my process, of gathering data I was able to easily obtain 

NEJM publication from the years 2005-2020. (Please note: for research in the future, I think it 

would be more interesting to go further back in time, particularly as a longer-time range may be more 

helpful in determining whether rates of p-hacking have increased over time). With that being said, 

due to the difficulties of collecting data, I have chosen to focus solely on the years from 2005-2020. 

This further limits generalizability because it is suggestive that results from my p-curve analysis may 

not be generalizable to other time-periods. 

 Considering 16 years of analysis, and approximately 800 published NEJM studies/year, my 

overall dataset consists of approximately 12,800 NEJM papers. Given that obtaining p-values is 

relatively labor-intensive, I have chosen to go with the approach of sub-sampling within defined 

time periods. This process was made easier by the relative uniformity of publishing rates. Within 

each year there are two volumes, and within each volume, there were between 25-27 issues. 

However, the vast majority of volumes contained exactly 26 issues (84.3%) see Figure 3. 

Figure 3: Data-set Overview  
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As previously mentioned, I have chosen to go with the approach of sub-sampling within 

defined time periods. Specifically, within each year, I have chosen to sample, 3 issues per volume, 

and then within each issue 2 papers. This means, that I will analyze a total of 12 studies/year. I made 

these decisions because I wanted my papers to be relatively uniformly distributed across year, 

volume number, and issue, to not be over-concentrated in one specific period. This is because 

during rare times --- such as in public health emergencies like Covid --- the journal can become 

hyper-focused on one particular issue which may limit generalizability.  

Figure 4: My Sub-Sampling Approach 

 49 

 In terms of my methodological framework, within each volume, I used a random number 

generator to determine which three issues to analyze. This suggests that it is likely the issues I 

analyzed are representative of the volumes they are a part of. However, within each issue, I had to 

pick two studies to gather data on. This process was more difficult because not all of the studies 

published in NEJM had at least one P-values, let alone primary and secondary variables of interest. 

While I did not measure this directly, I would estimate less than one-half of all studies had at least 

one published P-value which is in line with (Belas et al. 2017) analysis that 46.71% of 6,081 phase III 

clinical trials, had at least one primary P-value. Given that I needed at least one P-value and variable 

of interest, to gather data I had to get a little creative.  

 To determine which two papers, to analyze within each issue, I developed my own internal 

protocol. I would spotlight search for key terms and then go through each article until I found one 

with enough data my process was as follows: 

Figure 5: Data Collection Protocol: Articles/Issues 
1. Spotlight search for “Randomized,” 
2. Spotlight search for “Clinical,” 
3. Spotlight search for “Trial,” 
4. Spotlight search for “Cancer,” 
5. à If no spotlight search yield results proceed chronologically  

                                                
49 Unfortunately, this chart does not reflect the most up-to-date information. Due to time and space constraints, instead, 
of sub-sampling every year I have chosen to subsample 6-years. (2020 & 2019), (2015 & 2014), (2010 & 2009), and (2006 
& 2005). However, to remain with a sample size of 192 I have chosen to utilize 6 samples/volume instead of 3. This 
means I have 192 but only clustered over the designated 8 years instead of 16 
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To be clear, with regards to my protocol of selecting articles within a given issue, I would 

proceed with my five-step process. If any one-step returned multiple results, I would 

proceed chronologically until I found a suitable article.50 However, if the spotlight search 

returned no articles or the articles flagged didn’t have sufficient results (no P-value or 95% 

CI) I would proceed to the next step. On the rare, occasion, that there were no suitable 

articles within an entire issue, and if that was the case, I would have to proceed to the next 

issue. However, this only happened 6 times (6.25%).  

 While the process of spotlight searching for “randomized,” “clinical,” “trial,” and 

“cancer,” means that the articles I sampled are not representative of the overall issue they are 

a part of, I developed this protocol for a very specific reason. This is because clinical trials 

and randomized studies are the far most likely to be associated with clearly defined primary 

and secondary outcomes. This is very important because comparing the distribution of P-

values for primary and secondary outcomes, is the way I will determine whether there is 

evidence of p-hacking or data mining. While another strategy involves comparing p-curves 

over time, to see if there is evidence of more clustering around significant values such as 

0.001, 0.025, and 0.05 over time, given the limitations of a small sample size (96 data points) 

and a timeframe of only 16 years such changes may be hard to observe.  

 

  

 

 

 

 

 

 

 

 

 

 

                                                
50 By “suitable” article, I mean one suitable for P-curve analysis. This means for an article to be suitable it needed to at 
the base-level to have at least one P-value for the primary variable of interest or to have a 95% CI and SS that made 
calculating a P-value possible.  
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Section 4: Summary of Data 
 I generated my dataset in excel. For each of the 96 articles, I generated variables that identify 

the sample and my variables of interest.  

• Identification Variables: {Year, Volume, Issues in Volume, Number in Issue, 
Author, DOI, Title} 

• Variables of Interest   
o Name of Primary Variable of Interest (PVOI) 

§ {Exact P-value (PVOI), dummy P<0.005, dummy P<0.025, dummy 
P<0.001}51 

o Name of Secondary Variable of Interest (SVOI) 
§ {Exact P-value (SVOI), dummy P<0.005, dummy P<0.025, dummy 

P<0.001}52 
There were some articles included in my analysis that didn’t list p-values directly. If that was 

the case, I collected data on the 95% confidence interval on the difference between the treatment 

and control group, as well as sample sizes, for the treatment and control group. Using this 

information, I was able to calculate the standard deviation, and Z-score, which ultimately allowed 

me to solve for P-values using an online calculator. I only collected this information on 11 of the 96 

studies (11.4%). This is because the other studies I analyzed directly showed the p-values. This also 

only occurred in the year 2020, because after calculating this information in the year 2020, I filtered 

out all data which didn’t directly state the p-value for primary and secondary variables of interest. 

Just to give the reader a clear picture of what my data, looked like I have attached the following 

figures for samples 1-9. 

 

 

 

 

 

 

 

 

                                                
51 The variable “dummy P<0.005,” is a dummy variable as to whether statistical significance was achieved at the 5% 
level. (i.e. a one is given if P<0.05, and if not a zero is given.) Same goes for dummy P<0.0025, and dummy P<0.001, 
except at the 2.5% and 1% significance level.  
52 Ibid. It is also worth noting that I thought the dummy variables would be useful in my results sections, but I ended up 
not utilizing the data much. This makes it essentially redundant with my P-value, so there is really only one variable of 
interest.  
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Figure 5: Identification of Sample 

 

*Note: Identification also included Author, DOI, and title, but for spacing purposes I left it 
out of Figure 5.  
 
Figure 6: Data of Sample (For Primary Variable of Interest) 

 
*Please note, I collected the same data for secondary variable of interest. To see the full 
dataset, feel free to reach out to smsd2017@mymail.pomona.edu to ask for viewing 
permission.53 

 In summary, I was able to generate 190 p-values (data points) for the primary variable of 

interest. However, I was only able to generate 143 p-values for the secondary variables of interest. 

This suggests, that of the 190 studies I analyzed with a primary variable of interest and p-value 

75.26% had a secondary variable of interest. This makes intuitive sense, as most studies with a 

primary variable of interest (especially in clinical trials, or randomized experiments) have secondary 

                                                
53 The P-value column in my chart, reflects the p-values listed in the studies, whereas the p-value exact changes P<0.001 
to P=0.001 to allow for analysis with bar-charts in excel.  
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variables of interest. In some cases, studies had one primary variable of interest (PVOI) but more 

than one secondary variable of interest (SVOI). If that was the case, for purposes of continuity I 

only listed one (SVOI) but chose to list the first-one listed on summary statistics, to avoid any subtle 

data-manipulation or p-hacking on my part.  

 Figure 7: Summary Statistics  

 Number of 
Observations 

Number of 
Studies P<0.01 

Number of 
Studies P<0.025 

Number of 
Studies 
P<0.05 

Primary 
Variable of 
Interest 

190 99 108 135 

Secondary 
Variable of 
Interest 

143 41 55 69 
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Section 5: Results 
 In analyzing results, with my P-curve approach. it is important to keep in mind the two 

critical findings I suggested in my previous sections may be suggestive of p-hacking, data mining, or 

broader tinkering. 

1) A significant difference between the primary and secondary p-values distributions:  

particularly if the primary “p-value,” clumps around statistically significant values such as 

0.01, 0.025, and 0.05. 

2) Whether the rate of “clumping,” around statistically significance thresholds increase over 

time. (Is more common in more recent years) 

The first point, is particularly important because in clinical trials, drug development, and 

randomized trials, primary variables of interest play a critical role in approval or acceptance into the 

journal. Whereas secondary variables of interest, have no such effect but given a tendency to 

measure relatively similar phenomena should have an approximately similar P-curve. Clumping 

around “statistically significant variables” would therefore suggest, a likelihood of foul play, data-

mining, or p-hacking. Overall, the evidence in my paper, suggests that there is both a meaningful 

difference in the overall shape of the p-curve of primary and secondary variables of interest and that 

primary variables of interest are slightly more likely to “clump,” around thresholds of significance. 

Such data is suggestive of potential p-hacking and data-mining but not conclusively so.  

The second point is interesting because there is a fair amount of evidence to suggest that the 

phenomenon of p-hacking and data-mining has accelerated in recent years. However, given the 

limitations of my data (i.e. only comparing four time periods that are relatively close), 2020 & 2019 

vs. 2015 & 2014, vs. 2010 & 2009, vs. 2006 & 2005, and that every two years only contain a potential 

of 48 data-points, I went into the experiment with a great deal of caution. This is because with a 

relatively small sample size of 190, it would be hard to determine that any p-curves over time are 

representative of broader shifts and not random noise. I have included a few graphs here in case the 

reader is interested, but I would caution that I think this analysis is preliminary and a relatively small 

sample size to garner any definitive conclusions about whether the phenomena of p-hacking have 

increased over time. However, I think there is enough robust evidence to suggest that primary 

variables of interest have a larger right-skew then secondary variables of interest, suggesting higher 

statistical power.  
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Chart 1: Distribution of reported p-values (line-chart) 

 
* Distribution is such that 0.025< = p < 0.05 (same for every chart) 
*It’s also worth noting that by almost doubling the number of observations between drafts, the two-
sample t test with the null hypothesis that the primary and secondary distributions should be the 
same has increased to 3.03. This is higher than previously, suggesting a real difference between 
PVOI and SVOI. It’s also interesting that the percentage of PVOI between 0.025 and 0.05 is almost 
3 times that between .01 and 0.025 whereas such a phenomenon doesn’t exist with the SVOI. This is 
suggestive that there may be some P-hacking around the 5% threshold for the PVOI.  
 
Chart 2: Distribution of reported p-values (bar-chart) 
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*Charts 1-2 show the p-values of primary and secondary variables of interest. I have 

classified p-values for both primary and secondary variables of interest, into the six categories shown 

above. At the highest level, it’s worth noting that primary variables of interest, are associated with 

higher statistical significance than secondary variables of interest. Indeed, 71% of primary variables 

of interest have a P-value <0.05 as compared to 57% for secondary variables of interest. This may 

be suggestive of a) P-hacking/data mining or b) High statistical power of primary variables of 

interest. It’s worth noting that it’s slightly difficult to separate out these effects, and simply having 

primary variables of interest have higher statistical significance, does not in-itself necessarily prove 

foul play. Instead, what we would need to show would be abnormalities in the larger P-curve. 

Chart 3: Clustering of P-values  

  
 *Chart 3 attempts to better isolate whether the discrepancy between the primary and 

secondary variables of interest are caused by a) Differences in observational power and statistical 

significance of two groups or b) P-hacking and data-mining. I will note that at the significant 

threshold of P=0.05 and P=0.025, there seems to be a slight difference between the primary and 

secondary variables of interest. This suggests that at two of the pre-determined critical P values there 

is no conclusively data of clumping in primary values. However, it is worth noting that over 40% of 

the primary variable of interest, has a P-value of less than 0.005, as opposed to approximately 30% 

for the secondary variable of interest. This relative increase of almost a third-could be suggestive of 

data-mining or tinkering but generally speaking this effect, also coincides with increased statistical 

power of the primary variables of interest. Overall, this suggests very little evidence of data-tinkering 

and p-hacking. 
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Chart 4: Are primary and secondary p-values from the study different?  

 
This chart is suggestive of many of the phenomena previously mentioned. Mainly that within 

the same studies, the P-values of the secondary variable of interest are higher than that of the 

primary variable. Indeed, the equation for the line of best fit (LOB) is as follows: 

 Y = 0.4102x + 0.1542 

Chart 5: Another version of distribution of P-values 

 
 Chart five, is suggestive of the same data as chart 1-2 however, without putting the primary 

and secondary p-values into uneven bucket-sizes. However, they still need to be edited so both the 

P-value buckets are the same size, and small enough so that any abnormalities around 0.01, and 

0.025 and 0.05 could be observed.  
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Chart 6: A tale of Time

 

 
 Chart 6 is a messy chart and as previously mentioned I think the analysis of determining 

whether the prevalence of p-hacking or clustering of variables increases over time may be a bit of a 

fool’s errand. With that being said at least in the primary variables of interest there seems to be more 
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P-values towards the higher in 2006 & 2005, as well as opposed to the other years. Indeed, the 

percentage of P-values <0.001 is 60% in 2019 & 2020, the highest percentage for PVOI observed in 

the sample, whereas such a phenomenon does not occur SVOI. So perhaps this is a noisy way of 

suggesting, that it may be the case that average p-value decreases over time, but that is by no means 

conclusively demonstrated by this analysis.  Furthermore, even if that were the case, this could be 

for a variety of reasons besides for p-hacking, and data mining. 

Section 6: Conclusion 
 Utilizing a P-curve approach I hope to determine whether there is evidence of data-mining 

and p-hacking. I attempted to do this by comparing primary variables of interest to secondary 

variables of interest, as statistical significance of PVOIs is essential to publication but the same is not 

true for SVOIs. In conclusion, I found that PVOI tends to have lower p-values than SVOI. 

However, it is not clear if this is due to the influence of P-hacking and data-mining as opposed, to 

simply increased power of primary variables of interest. Based on a sample of 190 data points, it 

seems that the first effect is certainty true but evidence surrounding the second claim is mixed. 

 In terms of the question of clumping, I find some evidence that at the significant  

thresholds of 0.025 and 0.05 the primary variable of interest is more likely than the secondary 

variables of interest. Indeed, as Chart 2 shows in the PVOI there is a “kink” between 0.025 and 0.05, 

with 14% of the distribution occurring there as opposed to 5% between 0.01 and 0.025. It’s worth 

noting that in the SVOI there is no such kink exists, with each segment containing 10% of the 

distribution. Given that any deviation from the ideal p-curve may be suggestive of p-hacking this 

suggests there may be some evidence for p-hacking.  

While I did find evidence that a significantly higher percentage of PVOI has p-values of 

<0.01 as opposed to SVOI, this may be suggestive of potential p-hacking and data-bias. With that 

being said, I am skeptical of this claim as such a result would coincide with the natural increased 

right-skewing nature of the PVOI given increased statistical impact as opposed to SVOI. The 

question of why for the same studies PVOI tends to be more statistically significant than SVOI is 

still open to question and debate. While it may be due to fraud or manipulation, I am skeptical of 

this case, and instead, think it may be for other benign reasons. For example, it could be that 

researchers are more confident in the PVOI and test a variety of SVOI to understand side-effects or 

related causes to a treatment. With that being said, there were a few samples in my observation, were 

papers would test multiple PVOI and post-analytical only reference the significant finding in the 

introduction or results section. This was very rare, but could be suggestive of data-tinkering.  
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In conclusion, by doubling my data-set to 190 data points, I was able to conclude that the 

PVOI are more right-skewed than the SVOI, suggesting higher empirical power. The question of P-

hacking is slightly more complicated, but there is some preliminary evidence to suggests that there is 

some tinkering around the 2.5% to 5% given the differing distribution of the PVOI and SVOI in 

that threshold. It’s worth noting that my data-set is too small to determine whether the effect of P-

hacking and data-mining increases over time.  
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